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eAbstra
tThe problem of stability of the Trojan asteroids is investigated in the light of theNekhoroshev theory of stability over large time intervals. We 
onsider the two{dimensional (2D) planar, and the three{dimensional (3D) spatial restri
ted threebody problem (Sun{Jupiter{asteroid) as simple models for des
ribing the motionof an asteroid. Using these models we �nd regions of e�e
tive stability around theLagrangian point L4 su
h that if the initial 
onditions of an orbit are inside theseregions the orbit is 
on�ned in a slightly larger neighborhood of the equilibrium fora very long time. We prove that stability over the age of the universe is guaranteedin a realisti
 region, big enough to in
lude some real asteroids. This signi�
antlyimproves previous works on the subje
t1 Introdu
tionAlmost one 
entury after the dis
overy of the �rst Trojan asteroid (named 588A
hilles) by Max Wolf in 1906, the problem of the stability of these asteroidsremains open. In re
ent years this problem has been investigated by a number ofresear
hers, both numeri
ally and analyti
ally. The numeri
al investigations dealmainly, with the evolution in time of a sample of orbits, in sophisti
ated realisti
models of the solar system, and the statisti
al study of these orbits (Milani 1993,1994, Levison et al. 1997, Tsiganis et al. 2000, Dvorak & Tsiganis 2000).The usual approa
h in analyti
al studies of the stability of the Trojan asteroids isto 
onsider simple models for the system su
h as the two dimensional (2D) planar,and the three dimensional (3D) spatial restri
ted three body problem (RTBP)(Giorgilli et al. 1989, Sim�o 1989, Celletti & Giorgilli 1991, Celletti & Ferrara1996). As an example of a more 
ompli
ated model for the problem we refer tothe model studied by Gabern & Jorba (2001) where the e�e
t of Saturn on themotion of the asteroid has been taken into a

ount. The te
hniques used in thesepapers are based in normal forms or �rst integrals 
al
ulations. Roughly speakingone shows that the system admits a number of approximate integrals, whose timevariation 
an be 
ontrolled to be small for an extremely long time. In this 
ase wehave e�e
tive stability, i.e. even when an orbit is not stable, the time needed for itto leave the neighborhood of the equilibrium is larger than the expe
ted lifetime ofthe physi
al system studied. This is the basis to derive the 
lassi
al Nekhoroshev'sestimates (Nekhoroshev 1977). The size of the regions of e�e
tive stability found inthe above mentioned papers was not negligible but no real asteroids were a
tuallyfound to be inside these regions.In the present 
ommuni
ation we pay attention to some somehow re
ent re-sults obtained by Giorgilli & Skokos (1997{hereafter paper I) and Skokos & Dok-oumetzidis (2001{hereafter paper II), where some real asteroids were found to bee�e
tively stable.2 Realisti
 estimations of the e�e
tive stability regionThe �rst result that guaranties the e�e
tive stability of real asteroids was providedin paper I for the 2D RTBP. In the RTBP the Trojan asteroids are lo
ated in
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Figure 1: Curves of zero velo
ity for the RTBP on the plane of motion of Jupiter (J) in (a)helio
entri
 
oordinates Q1, Q2 in a uniformly rotating frame with its origin on the Sun (S) and(b) polar 
oordinates �, �, with Q1 = � 
os �, Q2 = � sin �. In both frames the position of theellipti
 Lagrangian point L4 is also marked.the neighborhood of the ellipti
 equilibrium Lagrangian points L4 and L5. In 2Dsystems the KAM theory guarantees (under generi
 
onditions of non-resonan
eand non-degenera
y) the existen
e of 2D tori that a
t as 
on�ners for the motion,sin
e, they separate the 3D energy surfa
e. So traje
tories initially lo
ated nearthe ellipti
 equilibrium point and inside a 2D torus will always remain in theneighborhood of the equilibrium point, whi
h ensures true stability. So, the resultobtained in paper I underline the fa
t that Nekhoroshev theory 
an give meaningfulestimates, but does not take into a

ount the possibility of the so{
alled Arnolddi�usion whi
h appears only in the 3D spatial problem. In the spatial problemthe tori around the ellipti
 equilibrium points L4 and L5 are 3D while the energymanifold is 5D. Thus the tori 
annot a
t as barriers for the motion. So, some orbitswith initial 
onditions near L4 (or L5) 
an be driven to regions of the phase spa
efar away from it. The e�e
tive stability around L4 for the 3D RTBP was studiedin paper II and one real asteroid (out of the 98 tested) was found to be inside theestimated stability region.Both papers were based on the 
onstru
tion of a normal form for the system inappropriate 
oordinates and in estimations of its time variation. The not negligibleimprovement of the size of the stability region a
hieved in these papers, 
omparedto older attempts, is mainly due to the use of better 
oordinates. The 
urves ofzero velo
ity on the plane of Jupiter's orbit form the banana{shaped region aroundL4 shown in �gure 1(a). All previous works were based on expansions in 
artesian
oordinates around L4. It is evident that 
artesian 
oordinates are not suitable todes
ribe regions with 
ir
ular shape. On the other hand the use of polar (for the2D problem) or 
ylindri
al 
oordinates (for the 3D problem) are better 
andidatesas 
an be seen from �gure 1(b).Also the fa
t that the normal form was 
omputed to higher orders than in pre-vious studies, both in the 3D and the 2D 
ase, helped in improving the estimationsof the stability region's size. In parti
ular in the 3D 
ase the normal form was
omputed up to order 29, while in the 2D 
ase up to order 49.3 SummaryThe basi
 results of papers I and II 
an be summarized as follows:� For the �rst time the estimated size of the e�e
tive stability region is big



enough to in
lude real asteroids: 1 asteroid in the spatial 
ase and 4 in theplanar 
ase. In the 3D 
ase the region where the most remote asteroid is lo-
ated (out of the 98 real asteroids 
he
ked), is larger by a fa
tor 34 
omparedto the estimated stability region. This result improves signi�
antly older esti-mates (Giorgilli et al. 1989, Celletti & Giorgilli 1991) where no real asteroidwas inside the stability region and a fa
tor 3,000 was needed for the mostremote asteroid to be inside the stability region.� The radii of the e�e
tive stability region in the spatial and planer 
ases are
lose to ea
h other for the same order of expansion of the normal form, withthe radius 
omputed for the spatial 
ase being always slightly smaller. Thus,Arnold di�usion does not a�e
t the size of the e�e
tive stability region signif-i
antly.� The theoreti
al framework used in papers I and II rea
hed the limits of itse�e
tiveness by providing the best possible results in the 2D 
ase, and 
ompa-rable results in the 3D 
ase. In parti
ular the optimal order of the expansionof the normal form was found to be equal to 38 in the 2D 
ase, although theexpansion of the normal form was performed up to order 49. So the 
om-putation of the normal form to orders higher than 38 does not improve theestimations in the 2D 
ase. In order to have a non negligible improvementof the estimated size of the e�e
tive stability region, one has to 
hoose bet-ter 
oordinates than the 
ylindri
al ones, in the sense that these 
oordinatesshould be more adapted to des
ribe the banana{shaped region of the a
tualstability region around L4.A
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